Тема: Теоремы о вероятностях событий
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Тема: Теоремы о вероятностях событий
Игральный кубик бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 3. Какова вероятность того, что было сделано два броска? Ответ округлите до сотых.
Тема: Теоремы о вероятностях событий
Игральный кубик бросают дважды. Известно, что в сумме выпало 6 очков. Найдите вероятность того, что в первый раз выпало 2 очка.
Тема: Теоремы о вероятностях событий
Биатлонист 5 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые 3 раза попал в мишени, а последние 2 раза промахнулся. Результат округлите до сотых.
Тема: Теоремы о вероятностях событий
Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
Тема: Теоремы о вероятностях событий
В торговом центре два одинаковых автомата продают чай. Вероятность того, что к концу дня в автомате закончится чай, равна 0,2. Вероятность того, что чай закончится в обоих автоматах, равна 0,18. Найдите вероятность того, что к концу дня чай останется в обоих автоматах.
Тема: Теоремы о вероятностях событий
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,25. Вероятность того, что кофе закончится в обоих автоматах, равна 0,1. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Тема: Теоремы о вероятностях событий
Две фабрики выпускают одинаковые стёкла для автомобильных фар. Первая фабрика выпускает 30% этих стёкол, вторая — 70%. Первая фабрика выпускает 5% бракованных стёкол, а вторая — 4%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Тема: Теоремы о вероятностях событий
Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,05. Перед упаковкой каждая батарейка проходит систему контроля качества. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.
Тема: Теоремы о вероятностях событий
Помещение освещается тремя лампами. Вероятность перегорания каждой лампы в течение года равна 0,9. Лампы перегорают независимо друг от друга. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Тема: Теоремы о вероятностях событий
Помещение освещается тремя лампами. Вероятность перегорания каждой лампы в течение года равна 0,8. Лампы перегорают независимо друг от друга. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Тема: Теоремы о вероятностях событий
Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0,9. Найдите вероятность того, что стрелок попадёт в первую мишень и не попадёт в три последние.
Тема: Теоремы о вероятностях событий
Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,01. Перед упаковкой каждая батарейка проходит систему контроля качества. Вероятность того, что система забракует неисправную батарейку, равна 0,96. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,06. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.
Тема: Теоремы о вероятностях событий
Игральную кость бросили два раза. Известно, что шесть очков не выпало ни разу. Найдите при этом условии вероятность события «сумма очков равна 8».
Тема: Теоремы о вероятностях событий
Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,5 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не меньше 0,7?
Тема: Теоремы о вероятностях событий
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в первом автомате закончится кофе, равна 0,1. Вероятность того, что кофе закончится во втором автомате, такая же. Вероятность того, что кофе закончится в двух автоматах, равна 0,03. Найдите вероятность того, что к концу дня кофе останется в двух автоматах.
Тема: Теоремы о вероятностях событий
В случайном эксперименте бросают две игральные кости (кубика). Найдите вероятность того, что в сумме выпадет 11 очков. Результат округлите до сотых.
Тема: Теоремы о вероятностях событий
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже 36,8 °C, равна 0,94. Найдите вероятность того, что в случайный момент времени у здорового человека температура тела окажется 36,8 °C или выше.
Тема: Теоремы о вероятностях событий
Вероятность того, что на тестировании по физике учащийся А. верно решит больше 6 задач, равна 0,61. Вероятность того, что А. верно решит больше 5 задач, равна 0,66. Найдите вероятность того, что А. верно решит ровно 6 задач.
Тема: Теоремы о вероятностях событий
В случайном эксперименте бросают две игральные кости (кубика). Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.