Главная Магазин Мои курсы Меню
ЕГЭ FLEX
Авторизация

Задания ЕГЭ | Математика (профильная)

1 19 задание №4463

Тема: Сюжетные задачи

В школах №1 и №2 учащиеся писали тест. В каждой школе тест писали по крайней мере 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы №1 в школу №2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе №1 уменьшиться в 10 раз? 
б) Средний балл в школе №1 уменьшился на 10%, средний балл в школе №2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе №2 равняться 7? 
в) Средний балл в школе №1 уменьшился на 10%, средний балл в школе №2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе №2.